Robust Preconditioners via Generalized Eigenproblems for Hybrid Sparse Linear Solvers
نویسندگان
چکیده
منابع مشابه
Factorization-based Sparse Solvers and Preconditioners
Efficient solution of large-scale, ill-conditioned and highly-indefinite algebraic equations often relies on high quality preconditioners together with iterative solvers. Because of their robustness, factorizationbased algorithms play a significant role in developing scalable solvers. We discuss the state-of-the-art, high performance sparse factorization techniques which are used to build spars...
متن کاملSparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs
For the solution of large systems of linear equations, iterative solvers with preconditioners are typically employed. However, the design of preconditioners for the black-box case, in which no additional information about the underlying problem is known, is very difficult. The most commonly employed method of incomplete LU factorizations is a serial algorithm and thus not well suited for the ma...
متن کاملWavelet based preconditioners for sparse linear systems
A class of efficient preconditioners based on Daubechies family of wavelets for sparse, unsymmetric linear systems that arise in numerical solution of Partial Differential Equations (PDEs) in a wide variety of scientific and engineering disciplines are introduced. Complete and Incomplete Discrete Wavelet Transforms in conjunction with row and column permutations are used in the construction of ...
متن کاملApproximate Inverse Preconditioners via Sparse-Sparse Iterations
The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...
متن کاملEfficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers
In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2019
ISSN: 0895-4798,1095-7162
DOI: 10.1137/17m1153765